On Rickart modules
Authors
Abstract:
Let $R$ be an arbitrary ring with identity and $M$ a right $R$-module with $S=$ End$_R(M)$. The module $M$ is called {it Rickart} if for any $fin S$, $r_M(f)=Se$ for some $e^2=ein S$. We prove that some results of principally projective rings and Baer modules can be extended to Rickart modules for this general settings.
similar resources
T-dual Rickart modules
We introduce the notions of T-dual Rickart and strongly T-dual Rickart modules. We provide several characterizations and investigate properties of each of these concepts. It is shown that every free (resp. finitely generated free) $R$-module is T-dual Rickart if and only if $overline{Z}^2(R)$ is a direct summand of $R$ and End$(overline{Z}^2(R))$ is a semisimple (resp. regular) ring. It is sho...
full texton rickart modules
let $r$ be an arbitrary ring with identity and $m$ a right $r$-module with $s=$ end$_r(m)$. the module $m$ is called {it rickart} if for any $fin s$, $r_m(f)=se$ for some $e^2=ein s$. we prove that some results of principally projective rings and baer modules can be extended to rickart modules for this general settings.
full textt-dual rickart modules
we introduce the notions of t-dual rickart and strongly t-dual rickart modules. we provide several characterizations and investigate properties of each of these concepts. it is shown that every free (resp. finitely generated free) $r$-module is t-dual rickart if and only if $overline{z}^2(r)$ is a direct summand of $r$ and end$(overline{z}^2(r))$ is a semisimple (resp. regular) ring. it is sho...
full textOn the Spectral Theory for Rickart Ordered
RO-algebras are defined and studied. For RO-algebra T , using properties of partial order, it is established that the set of bounded elements can be endowed with C-norm. The structure of commutative subalgebras of T is considered and the Spectral Theorem for any self-adjoint element of T is proven.
full textMinus Partial Order in Rickart Rings
The minus partial order is already known for complex matrices and bounded linear operators on Hilbert spaces. We extend this notion to Rickart rings, and thus we generalize some well-known results.
full textMy Resources
Journal title
volume 38 issue 2
pages 433- 445
publication date 2012-07-15
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023